
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Temporal Stream Logic:
Synthesis beyond the Bools?

Bernd Finkbeiner1, Felix Klein1,
Ruzica Piskac2, and Mark Santolucito2

1 Saarland University, Saarbrücken, Germany
2 Yale University, New Haven, USA

Abstract. Reactive systems that operate in environments with complex
data, such as mobile apps or embedded controllers with many sensors,
are difficult to synthesize. Synthesis tools usually fail for such systems
because the state space resulting from the discretization of the data is
too large. We introduce TSL, a new temporal logic that separates control
and data. We provide a CEGAR-based synthesis approach for the con-
struction of implementations that are guaranteed to satisfy a TSL spec-
ification for all possible instantiations of the data processing functions.
TSL provides an attractive trade-off for synthesis. On the one hand,
synthesis from TSL, unlike synthesis from standard temporal logics, is
undecidable in general. On the other hand, however, synthesis from TSL
is scalable, because it is independent of the complexity of the handled
data. Among other benchmarks, we have successfully synthesized a mu-
sic player Android app and a controller for an autonomous vehicle in the
Open Race Car Simulator (TORCS).

1 Introduction

In reactive synthesis, we automatically translate a formal specification, typically
given in a temporal logic, into a controller that is guaranteed to satisfy the
specification. Over the past two decades there has been much progress on reac-
tive synthesis, both in terms of algorithms, notably with techniques like GR(1)-
synthesis [11] and bounded synthesis [27], and in terms of tools, as showcased,
for example, in the annual syntcomp competition [35].

In practice however, reactive synthesis has seen limited success. One of the
largest published success stories [10] is the synthesis of the AMBA bus protocol.
To push synthesis even further, automatically synthesizing a controller for an
autonomous system has been recognized to be of critical importance [68]. Despite
many years of experience with synthesis tools, our own attempts to synthesize
such controllers with existing tools have been unsuccessful. The reason is that the
tools are unable to handle the data complexity of the controllers. The controller
? Supported by the European Research Council (ERC) Grant OSARES (No. 683300),
the German Research Foundation (DFG) as part of the Collaborative Research Cen-
ter Foundations of Perspicuous Software Systems (TRR 248, 389792660), and the
National Science Foundation (NSF) Grant CCF-1302327.

only needs to switch between a small number of behaviors, like steering during
a bend, or shifting gears on high rpm. The number of control states in a typical
controller (cf. [25]) is thus not much different from the arbiter in the AMBA case
study. However, in order to correctly initiate transitions between control states,
the driving controller must continuously process data from more than 20 sensors.

If this data is included (even as a rough discretization) in the state space of
the controller, then the synthesis problem is much too large to be handled by
any available tools. It seems clear then, that a scalable synthesis approach must
separate control and data. If we assume that the data processing is handled by
some other approach (such as deductive synthesis [51] or manual programming),
is it then possible to solve the remaining reactive synthesis problem?

In this paper, we show scalable reactive synthesis is indeed possible. Sepa-
rating data and control has allowed us to synthesize reactive systems, including
an autonomous driving controller and a music player app, that had been impos-
sible to synthesize with previously available tools. However, the separation of
data and control implies some fundamental changes to reactive synthesis, which
we describe in the rest of the paper. The changes also imply that the reactive
synthesis problem is no longer, in general, decidable. We thus trade theoretical
decidability for practical scalability, which is, at least with regard to the goal of
synthesizing realistic systems, an attractive trade-off.

We introduce Temporal Stream Logic (TSL), a new temporal logic that in-
cludes updates, such as Jy � f xK, and predicates over arbitrary function terms.
The update Jy � f xK indicates that the result of applying function f to vari-
able x is assigned to y. The implementation of predicates and functions is not
part of the synthesis problem. Instead, we look for a system that satisfies the
TSL specification for all possible interpretations of the functions and predicates.

This implicit quantification over all possible interpretations provides a useful
abstraction: it allows us to independently implement the data processing part.
On the other hand, this quantification is also the reason for the undecidability of
the synthesis problem. If a predicate is applied to the same term twice, it must
(independently of the interpretation) return the same truth value. The synthesis
must then implicitly maintain a (potentially infinite) set of terms to which the
predicate has previously been applied. As we show later, this set of terms can
be used to encode PCP [59] for a proof of undecidability.

We present a practical synthesis approach for TSL specifications, which is
based on bounded synthesis [27] and counterexample-guided abstraction refine-
ment (CEGAR) [16]. We use bounded synthesis to search for an implementation
up to a (iteratively growing) bound on the number of states. This approach
underapproximates the actual TSL synthesis problem by leaving the interpre-
tation of the predicates to the environment. The underapproximation allows
for inconsistent behaviors: the environment might assign different truth values
to the same predicate when evaluated at different points in time, even if the
predicate is applied to the same term. However, if we find an implementation
in this underapproximation, then the CEGAR loop terminates and we have a
correct implementation for the original TSL specification. If we do not find an

x

TSL

CFM

Synthesis

LTL Circuit

n

FRP Translator

Project Context

Compiler

LTL
Synthesis Tool

Counter
StrategyRefinement unrealizable

Design Pattern:
Arrow | Applicative

FRP

EXE
Function & Predicate

Implementations

FRP Library

3

non-spuriousspurious

7

Fig. 1: The TSL synthesis procedure uses a modular design. Each step takes
input from the previous step as well as interchangeable modules (dashed boxes).

implementation in the underapproximation, we compute a counter strategy for
the environment. Because bounded synthesis reduces the synthesis problem to
a safety game, the counter strategy is a reachability strategy that can be rep-
resented as a finite tree. We check whether the counter strategy is spurious by
searching for a pair of positions in the strategy where some predicate results in
different truth values when applied to the same term. If the counter strategy
is not spurious, then no implementation exists for the considered bound, and
we increase the bound. If the counter strategy is spurious, then we introduce a
constraint into the specification that eliminates the incorrect interpretation of
the predicate, and continue with the refined specification.

A general overview of this procedure is shown in Fig. 1. The top half of the
figure depicts the bounded search for an implementation that realizes a TSL spec-
ification using the CEGAR loop to refine the specification. If the specification
is realizable, we proceed in the bottom half of the process, where a synthesized
implementation is converted to a control flow model (CFM) determining the
control of the system. We then specialize the CFM to Functional Reactive Pro-
gramming (FRP), which is a popular and expressive programming paradigm for
building reactive programs using functional programming languages [21]. Our
framework supports any FRP library using the Arrow or Applicative design
patterns, which covers most of the existing FRP libraries (e.g. [4,6,17,55]). Fi-
nally, the synthesized control flow is embedded into a project context, where it
is equipped with function and predicate implementations and then compiled to
an executable program.

Sys.leaveApp () :
if (MP.musicPlaying ())

Ctrl.pause()

Sys.resumeApp () :
pos = MP.trackPos ()
Ctrl.play(Tr ,pos)

ALWAYS
(
leaveApp Sys ∧ musicPlaying MP

→ JCtrl � pause()K
)

ALWAYS
(
resumeApp Sys

→ JCtrl � play Tr (trackPos MP)K
)

Fig. 2: Sample code and specification for the music player app.

Our experience with synthesizing systems based on TSL specifications has
been extremely positive. The synthesis works for a broad range of benchmarks,
ranging from classic reactive synthesis problems (like escalator control), through
programming exercises from functional reactive programming, to novel case stud-
ies like our music player app and the autonomous driving controller for a vehicle
in the Open Race Car Simulator (TORCS).

2 Motivating Example

To demonstrate the utility of our method, we synthesized a music player Android
app3 from a TSL specification. A major challenge in developing Android apps is
the temporal behavior of an app through the Android lifecycle [60]. The Android
lifecycle describes how an app should handle being paused, when moved to the
background, coming back into focus, or being terminated. In particular, resume
and restart errors are commonplace and difficult to detect and correct [60]. Our
music player app demonstrates a situation in which a resume and restart error
could be unwittingly introduced when programming by hand, but is avoided by
providing a specification. We only highlight the key parts of the example here
to give an intuition of TSL. The complete specification is presented in [26].

Our music player app utilizes the Android music player library (MP), as well
as its control interface (Ctrl). It pauses any playing music when moved to the
background (for instance if a call is received), and continues playing the currently
selected track (Tr) at the last track position when the app is resumed. In the
Android system (Sys), the leaveAppmethod is called whenever the app moves to
the background, while the resumeApp method is called when the app is brought
back to the foreground. To avoid confusion between pausing music and pausing
the app, we use leaveApp and resumeApp in place of the Android methods
onPause and onResume. A programmer might manually write code for this as
shown on the left in Fig. 2.

The behavior of this can be directly described in TSL as shown on the right
in Fig. 2. Even eliding a formal introduction of the notation for now, the specifi-
cation closely matches the textual specification. First, when the user leaves the
app and the music is playing, the music pauses. Likewise for the second part,
when the user resumes the app, the music starts playing again.

3 https://play.google.com/store/apps/details?id=com.mark.myapplication.

https://play.google.com/store/apps/details?id=com.mark.myapplication

bool wasPlaying = false

Sys.leaveApp () :
if (MP.musicPlaying ()) :

wasPlaying = true
Ctrl.pause()

else
wasPlaying = false

Sys.resumeApp () :
if (wasPlaying)

pos = MP.trackPos ()
Ctrl.play(Tr ,pos)

ALWAYS
(
(leaveApp Sys ∧ musicPlaying MP

→ JCtrl � pause()K)

∧ (JCtrl � play Tr (trackPos MP)K

AS_SOON_AS resumeApp Sys)
)

Fig. 3: The effect of a minor change in functionality on code versus a specification.

However, assume we want to change the behavior so that the music only
plays on resume when the music had been playing before leaving the app in
the first place. In the manually written program, this new functionality requires
an additional variable wasPlaying to keep track of the music state. Managing
the state requires multiple changes in the code as shown on the left in Fig. 3.
The required code changes include: a conditional in the resumeApp method,
setting wasPlaying appropriately in two places in leaveApp, and providing an
initial value. Although a small example, it demonstrates how a minor change in
functionality may require wide-reaching code changes. In addition, this change
introduces a globally scoped variable, which then might accidentally be set or
read elsewhere. In contrast, it is a simple matter to change the TSL specification
to reflect this new functionality. Here, we only update one part of the specifica-
tion to say that if the user leaves the app and the music is playing, the music
has to play again as soon as the app resumes.

Synthesis allows us to specify a temporal behavior without worrying about
the implementation details. In this example, writing the specification in TSL has
eliminated the need of an additional state variable, similarly to a higher order
map eliminating the need for an iteration variable. However, in more complex
examples the benefits compound, as TSL provides a modular interface to spec-
ify behaviors, offloading the management of multiple interconnected temporal
behaviors from the user to the synthesis engine.

3 Preliminaries

We assume time to be discrete and denote it by the set N of positive integers.
A value is an arbitrary object of arbitrary type. V denotes the set of all values.
The Boolean values are denoted by B ⊆ V. A stream s : N → V is a function
fixing values at each point in time. An n-ary function f : Vn → V determines
new values from n given values, where the set of all functions (of arbitrary arity)
is given by F . Constants are functions of arity 0. Every constant is a value, i.e.,
is an element of F ∩ V. An n-ary predicate p : Vn → B checks a property over n

values. The set of all predicates (of arbitrary arity) is given by P, where P ⊆ F .
We use B[A] to denote the set of all total functions with domain A and image B.

In the classical synthesis setting, inputs and outputs are vectors of Booleans,
where the standard abstraction treats inputs and outputs as atomic propositions
I ∪O, while their Boolean combinations form an alphabet Σ = 2I∪O. Behavior
then is described through infinite sequences α = α(0)α(1)α(2) . . . ∈ Σω. A
specification describes a relation between input sequences α ∈ (2I)ω and output
sequences β ∈ (2O)ω. Usually, this relation is not given by explicit sequences, but
by a fomula in a temporal logic. The most popular such logic is Linear Temporal
Logic (LTL) [57], which uses Boolean connectives to specify behavior at specific
points in time, and temporal connectives, to relate sub-specifications over time.
The realizability and synthesis problems for LTL are 2ExpTime-complete [58].

An implementation describes a realizing strategy, formalized via infinite trees.
A Φ-labeled and Υ -branching tree is a function σ : Υ ∗ → Φ, where Υ denotes the
set of branching directions along a tree. Every node of the tree is given by a finite
prefix v ∈ Υ ∗, which fixes the path to reach a node from the root. Every node is
labeled by an element of Φ. For infinite paths ν ∈ Υω, the branch σoν denotes the
sequence of labels that appear on ν, i.e., ∀t ∈ N. (σoν)(t) = σ(ν(0) . . . ν(t− 1)).

4 Temporal Stream Logic

We present a new logic: Temporal Stream Logic (TSL), which is especially de-
signed for synthesis and allows for the manipulatation of infinite streams of
arbitrary (even non-enumerative, or higher order) type. It provides a straight-
forward notation to specify how outputs are computed from inputs, while using
an intuitive interface to access time. The main focus of TSL is to describe tem-
poral control flow, while abstracting away concrete implementation details. This
not only keeps the logic intuitive and simple, but also allows a user to identify
problems in the control flow even without a concrete implementation at hand.
In this way, the use of TSL scales up to any required abstraction, such as API
calls or complex algorithmic transformations.

Architecture A TSL formula ϕ specifies a reactive system that in every time step
processes a finite number of inputs I and produces a finite number of outputs O.
Furthermore, it uses cells C to store a value computed at time t, which can
then be reused in the next time step t + 1. An overview of the architecture
of such a system is given in Fig. 4a. In terms of behavior, the environment
produces infinite streams of input data, while the system uses pure (side-effect
free) functions to transform the values of these input streams in every time step.
After their transformation, the data values are either passed to an output stream
or are passed to a cell, which pipes the output value from one time step back
to the corresponding input value of the next. The behaviour of the system is
captured by its infinite execution over time.

inputs:
I

cells: C

outputs:
O

reactive system

implementing a

TSL specification ϕ...
...

...
...

(a) Architecture

Function Term:
τF := si | f τ0F τ1F · · · τn−1

F

Predicate Term:
τP := p τ0F τ1F · · · τn−1

F

Update:
Jso � τF K

(b) Term Definitions

Fig. 4: General architecture of reactive systems that are specified in TSL on the
left, and the structure of function, predicate and updates on the right.

Function Terms, Predicate Terms, and Updates In TSL we differentiate be-
tween two elements: we use purely functional transformations, reflected by
functions f ∈ F and their compositions, and predicates p ∈ P, used to control
how data flows inside the system. To argue about both elements we use a term
based notation, where we distinguish between function terms τF and predicate
terms τP , respectively. Function terms are either constructed from inputs or cells
(si ∈ I ∪ C), or from functions, recursively applied to a set of function terms.
Predicate terms are constructed similarly, by applying a predicate to a set of
function terms. Finally, an update takes the result of a function computation
and passes it either to an output or a cell (so ∈ O∪C). An overview of the syn-
tax of the different term notations is given in Fig. 4b. Note that we use curried
argument notation similar to functional programming languages.

We denote sets of function and predicate terms, and updates by TF , TP and
TU, respectively, where TP ⊆ TF . We use F to denote the set of function literals
and P ⊆ F to denote the set of predicate literals, where the literals si, so, f
and p are symbolic representations of inputs and cells, outputs and cells, func-
tions, and predicates, respectively. Literals are used to construct terms as shown
in Fig. 4b. Since we use a symbolic representation, functions and predicates are
not tied to a specific implementation. However, we still classify them according
to their arity, i.e., the number of function terms they are applied to, as well as by
their type: input, output, cell, function or predicate. Furthermore, terms can be
compared syntactically using the equivalence relation ≡. To assign a semantic
interpretation to functions, we use an assignment function 〈·〉 : F→ F .

Inputs, Outputs, and Computations We consider momentary inputs i ∈ V [I],
which are assignments of inputs i ∈ I to values v ∈ V. For the sake of read-
ability let I = V [I]. Input streams are infinite sequences ι ∈ Iω consisting of
infinitely many momentary inputs.

Similarly, a momentary output o ∈ V [O] is an assignment of outputs o ∈ O
to values v ∈ V, where we also use O = V [O]. Output streams are infinite
sequences % ∈ Oω. To capture the behavior of a cell, we introduce the notion
of a computation ς. A computation fixes the function terms that are used to

compute outputs and cell updates, without fixing semantics of function literals.
Intuitively, a computation only determines which function terms are used to
compute an output, but abstracts from actually computing it.

The basic element of a computation is a computation step c ∈ T [O∪C]
F , which

is an assignment of outputs and cells so ∈ O∪C to function terms τF ∈ TF . For
the sake of readability let C = T [O∪C]

F . A computation step fixes the control flow
behaviour at a single point in time. A computation ς ∈ Cω is an infinite sequence
of computation steps.

As soon as input streams, and function and predicate implementations are
known, computations can be turned into output streams. To this end, let
〈·〉 : F → F be some function assignment. Furthermore, assume that there are
predefined constants initc ∈ F ∩ V for every cell c ∈ C, which provide an initial
value for each stream at the initial point in time. To receive an output stream
from a computation ς ∈ Cω under the input stream ι, we use an evaluation
function η〈·〉: Cω × Iω × N× TF → V:

η〈·〉(ς, ι, t, si) =

ι(t)(si) if si ∈ I
initsi if si ∈ C ∧ t = 0

η〈·〉(ς, ι, t− 1, ς(t− 1)(si)) if si ∈ C ∧ t > 0

η〈·〉(ς, ι, t, f τ0 · · · τm−1) = 〈f〉 η〈·〉(ς, ι, t, τ0) · · · η〈·〉(ς, ι, t, τm−1)

Then %〈·〉,ς,ι ∈ Oω is defined via %〈·〉,ς,ι(t)(o) = η〈·〉(ς, ι, t, o) for all t ∈ N, o ∈ O.

Syntax Every TSL formula ϕ is built according to the following grammar:

ϕ := τ ∈ TP ∪ TU | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ

An atomic proposition τ consists either of a predicate term, serving as a Boolean
interface to the inputs, or of an update, enforcing a respective flow at the current
point in time. Next, we have the Boolean operations via negation and conjunc-
tion, that allow us to express arbitrary Boolean combinations of predicate evalu-
ations and updates. Finally, we have the temporal operator next: ψ, to specify
the behavior at the next point in time and the temporal operator until: ϑU ψ,
which enforces a property ϑ to hold until the property ψ holds, where ψ must
hold at some point in the future eventually.

Semantics Formally, this leads to the following semantics. Let 〈·〉 : F → F ,
ι ∈ Iω, and ς ∈ Cω be given, then the validity of a TSL formula ϕ with re-
spect to ς and ι is defined inductively over t ∈ N via:

ς, ι, t �〈·〉 p τ0 · · · τm−1 :⇔ η〈·〉(ς, ι, t, p τ0 · · · τm−1)

ς, ι, t �〈·〉 Js � τ K :⇔ ς(t)(s) ≡ τ
ς, ι, t �〈·〉 ¬ψ :⇔ ς, ι, t 2〈·〉 ψ
ς, ι, t �〈·〉 ϑ ∧ ψ :⇔ ς, ι, t �〈·〉 ϑ ∧ ς, ι, t �〈·〉 ψ

ς, ι, t �〈·〉 ψ :⇔ ς, ι, t+ 1 �〈·〉 ψ

ς, ι, t �〈·〉 ϑU ψ :⇔ ∃t′′ ≥ t. ∀t ≤ t′ < t′′. ς, ι, t′ �〈·〉 ϑ ∧ ς, ι, t′′ �〈·〉 ψ

Consider that the satisfaction of a predicate depends on the current computation
step and the steps of the past, while for updates it only depends on the current
computation step. Furthermore, updates are only checked syntactically, while
the satisfaction of predicates depends on the given assignment 〈·〉 and the input
stream ι. We say that ς and ι satisfy ϕ, denoted by ς, ι �〈·〉 ϕ, if ς, ι, 0 �〈·〉 ϕ.

Beside the basic operators, we have the standard derived Boolean opera-
tors, as well as the derived temporal operators: release ϕRψ ≡ ¬((¬ψ)U(¬ϕ)),
finally ϕ ≡ trueU ϕ, always ϕ ≡ falseRϕ, the weak version of until
ϕW ψ ≡ (ϕU ψ) ∨ (ϕ), and as soon as ϕA ψ ≡ ¬ψW(ψ ∧ ϕ).

Realizability We are interested in the following realizability problem: given a
TSL formula ϕ, is there a strategy σ ∈ C[I+] such that for every input ι ∈ Iω
and function implementation 〈·〉 : F→ F , the branch σ o ι satisfies ϕ, i.e.,

∃σ ∈ C[I
+]. ∀ι ∈ Iω. ∀〈·〉 : F→ F . σ o ι, ι �〈·〉 ϕ

If such a strategy σ exists, we say σ realizes ϕ. If we additionally ask for a
concrete instantiation of σ, we consider the synthesis problem of TSL.

5 TSL Properties

In order to synthesize programs from TSL specifications, we give an overview of
the first part of our synthesis process, as shown in Fig. 1. First we show how to
approximate the semantics of TSL through a reduction to LTL. However, due
to the approximation, finding a realizable strategy immediately may fail. Our
solution is a CEGAR loop that improves the approximation. This CEGAR loop
is necessary, because the realizability problem of TSL is undecidable in general.

Approximating TSL with LTL We approximate TSL formulas with weaker LTL
formulas. The approximation reinterprets the syntactic elements, TP and TU, as
atomic propositions for LTL. This strips away the semantic meaning of the func-
tion application and assignment in TSL, which we reconstruct by later adding
assumptions lazily to the LTL formula.

Formally, let TP and TU be the finite sets of predicate terms and updates,
which appear in ϕTSL, respectively. For every assigned signal, we partition TU
into

⊎
so∈O∪C T

so
U . For every c ∈ C let T c

U/id = T
c
U ∪ {Jc � cK}, for o ∈ O let

T o
U/id = T

o
U , and let TU/id =

⋃
so∈O∪C T

so
U/id. We construct the LTL formula ϕLTL

over the input propositions TP and output propositions TU/id as follows:

ϕLTL =
(∧

so∈O∪C

∨
τ∈T so

U/id

(
τ ∧

∧
τ ′∈T so

U/id\{τ}

¬ τ ′
))
∧ SyntacticConversion

(
ϕTSL

)
Intuitively, the first part of the equation partially reconstructs the semantic
meaning of updates by ensuring that a signal is not updated with multiple values
at a time. The second part extracts the reactive constraints of the TSL formula
without the semantic meaning of functions and updates.

Theorem 1 ([26]). If ϕLTL is realizable, then ϕTSL is realizable.

(Jy � yK ∨ Jy � xK)
∧ p x → p y

(a) TSL specification

¬(y_to_y ∧ x_to_y)
∧ (y_to_y ∨ x_to_y)
∧ p_x → p_y

(b) initial approximation

p_x ∧ ¬ p_y

(c) spurious counter-strategy

Fig. 5: A TSL specification (a) with input x and cell y that is realizable. A
winning strategy is to save x to y as soon as p(x) is satisfied. However, the initial
approximation (b), that is passed to an LTL synthesis solver, is unrealizable, as
proven through the counter-strategy (c) returned by the LTL solver.

Note that unrealizability of ϕLTL does not imply that ϕTSL is unrealizable. It
may be that we have not added sufficiently many environment assumptions to
the approximation in order for the system to produce a realizing strategy.

Example As an example, we present a simple TSL specification in Fig. 5a. The
specification asserts that the environment provides an input x for which the
predicate p x will be satisfied eventually. The system must guarantee that even-
tually p y holds. According to the semantics of TSL the formula is realizable.
The system can take the value of x when p x is true and save it to y, thus guar-
anteeing that p y is satisfied eventually. This is in contrast to LTL, which has no
semantics for pure functions - taking the evaluation of p y as an environmentally
controlled value that does not need to obey the consistency of a pure function.

Refining the LTL Approximation It is possible that the LTL solver returns a
counter-strategy for the environment although the original TSL specification is
realizable. We call such a counter-strategy spurious as it exploits the additional
freedom of LTL to violate the purity of predicates as made possible by the
underapproximation. Formally, a counter-strategy is an infinite tree π : C∗ → 2TP ,
which provides predicate evaluations in response to possible update assignments
of function terms τF ∈ TF to outputs o ∈ O. W.l.o.g. we can assume that O, TF
and TP are finite, as they can always be restricted to the outputs and terms that
appear in the formula. A counter-strategy is spurious, iff there is a branch π o ς
for some computation ς ∈ Cω, for which the strategy chooses an inconsistent
evaluation of two equal predicate terms at different points in time, i.e.,

∃ς ∈ Cω. ∃t, t′ ∈ N. ∃τP ∈ TP .
τP ∈ π(ς(0)ς(1) . . . ς(t− 1)) ∧ τP /∈ π(ς(0)ς(1) . . . ς(t′ − 1)) ∧
∀〈·〉 : F→ F . η〈·〉(ς, π o ς, t, τP) = η〈·〉(ς, π o ς, t

′, τP).

Note that a non-spurious strategy can be inconsistent along multiple branches.
Due to the definition of realizability the environment can choose function and
predicate assignments differently against every system strategy accordingly.

By purity of predicates in TSL the environment is forced to always return
the same value for predicate evaluations on equal values. However, this semantic
property cannot be enforced implicitly in LTL. To resolve this issue we use the
returned counter-strategy to identify spurious behavior in order to strengthen
the LTL underapproximation with additional environment assumptions. After

Algorithm 1 Check-Spuriousness

Input: bound b, counter-strategy π : C∗→2TP (finitely represented using m states)
1: for all v ∈ Cm·b, τP ∈ TP , t, t′ ∈ {0, 1, . . . ,m · b− 1} do
2: if η〈·〉id(v, ιid, t, τP) ≡ η〈·〉id(v, ιid, t

′, τP) ∧
τP ∈ π(v0 . . . vt−1) ∧ τP /∈ π(v0 . . . vt′−1) then

3: w ← reduce (v, τP , t, t′)
4: return

(∧t−1
i=0

iwi ∧
∧t′−1
i=0

iwi → (tτP ↔ t′τP)
)

5: return “non-spurious”

adding the derived assumptions, we re-execute the LTL synthesizer to check
whether the added assumptions are sufficient in order to obtain a winning strat-
egy for the system. If the solver still returns a spurious strategy, we continue
the loop in a CEGAR fashion until the set of added assumptions is sufficiently
complete. However, if a non-spurious strategy is returned, we have found a proof
that the given TSL specification is indeed unrealizable and terminate.

Algorithm 1 shows how a returned counter-strategy π is checked for being
spurious. To this end, it is sufficient to check π against system strategies bounded
by the given bound b, as we use bounded synthesis [27]. Furthermore, we can
assume w.l.o.g. that π is given by a finite state representation, which is always
possible due to the finite model guarantees of LTL. Also note that π, as it is re-
turned by the LTL synthesizer, responds to sequences of sets of updates (2TU/id)∗.
However, in our case (2TU/id)∗ is an alternative representation of C∗, due to the
additional “single update” constraints added during the construction of ϕLTL.

The algorithm iterates over all possible responses v ∈ Cm·b of the system up to
depth m ·b. This is sufficient, since any deeper exploration would result in a state
repetition of the cross-product of the finite state representation of π and any sys-
tem strategy bounded by b. Hence, the same behaviour could also be generated by
a sequence smaller thanm·b. At the same time, the algorithm iterates over predi-
cates τP ∈ TP appearing in ϕTSL and times t and t′ smaller thanm·b. For each of
these elements, spuriousness is checked by comparing the output of π for the eval-
uation of τP at times t and t′, which should only differ if the inputs to the pred-
icates are different as well. This can only happen, if the passed input terms have
been constructed differently over the past. We check it by using the evaluation
function η equipped with the identity assignment 〈·〉id : F → F, with 〈f〉id = f
for all f ∈ F, and the input sequence ιid, with ιid(t)(i) = (t, i) for all t ∈ N and
i ∈ I, that always generates a fresh input. Syntactic inequality of η〈·〉id(v, ιid, t, τP)
and η〈·〉id(v, ιid, t

′, τP) then is a sufficient condition for the existence of an assign-
ment 〈·〉 : F→ F , for which τP evaluates differently at times t and t′.

If spurious behaviour of π could be found, then the revealing response v ∈ C∗
is first simplified using reduce, which reduces v again to a sequence of sets
of updates w ∈ (2TU/id)∗ and removes updates that do not affect the behavior
of τP at the times t and t′ to accelerate the termination of the CEGAR loop.
Afterwards, the sequence w is turned into a new assumption that prohibits the
spurious behavior, generalized to prevent it even at arbitrary points in time.

As an example of this process, reconsider the spurious counter-strategy of
Fig. 5c. Already after the first system response Jy � xK, the environment pro-
duces an inconsistency by evaluating p x and p y differently. This is inconsistent,
as the cell y holds the same value at time t = 1 as the input x at time t = 0. Us-
ing Algorithm 1 we generate the new assumption (Jy � xK→ (p x↔ p y)).
After adding this strengthening the LTL synthesizer returns a realizability result.

Undecidability Although we can approximate the semantics of TSL with LTL,
there are TSL formulas that cannot be expressed as LTL formulas of finite size.

Theorem 2 ([26]). The realizability problem of TSL is undecidable.

6 TSL Synthesis

Our synthesis framework provides a modular refinement process to synthesize
executables from TSL specifications, as depicted in Fig. 1. The user initially
provides a TSL specification over predicate and function terms. At the end of
the procedure, the user receives an executable to control a reactive system.

The first step of our method answers the synthesis question of TSL: if the
specification is realizable, then a control flow model is returned. To this end, an
intermediate translation to LTL is used, utilizing an LTL synthesis solver that
produces circuits in the AIGER format. If the specification is realizable, the
resulting control flow model is turned into Haskell code, which is implemented
as an independent Haskell module. The user has the choice between two differ-
ent targets: a module built on Arrows, which is compatible with any Arrowized
FRP library, or a module built on Applicative, which supports Applicative FRP
libraries. Our procedure generates a single Haskell module per TSL specification.
This makes naturally decomposing a project according to individual tasks possi-
ble. Each module provides a single component, which is parameterized by their
initial state and the pure function and predicate transformations. As soon as
these are provided as part of the surrounding project context, a final executable
can be generated by compiling the Haskell code.

An important feature of our synthesis approach is that implementations for
the terms used in the specification are only required after synthesis. This allows
the user to explore several possible specifications before deciding on any term
implementations.

Control Flow Model The first step of our approach is the synthesis of a Control
Flow Model M (CFM) from the given TSL specification ϕ, which provides us
with a uniform representation of the control flow structure of our final program.
Formally, a CFM M is a tuple M = (I,O,C, V, `, δ), where I is a finite set of
inputs, O is a finite set of outputs, C is a finite set of cells, V is a finite set of
vertices, ` : V → F assigns a vertex a function f ∈ F or a predicate p ∈ P, and

δ : (O ∪ C ∪ V)× N→ (I ∪ C ∪ V ∪ {⊥})

is a dependency relation that relates every output, cell, and vertex of the CFM
with n ∈ N arguments, which are either inputs, cells, or vertices. Outputs

(== m0)(== m0)

playButtonplayButton

resumeAppresumeApp

pauseButtonpauseButton
leaveAppleaveApp

musicPlayingmusicPlaying

m0m0
m1m1

pausepause

trackPostrackPos playplay

1

2

1 2

1 2 3

1

3

2

Cell

Ctrl

MP

Cell

Tr

Sys

≡ and

≡ or

≡ not

≡ mutex

Fig. 6: Example CFM of the music player generated from a TSL specification.

and cells s ∈ O ∪ C always have only a single argument, i.e., δ(s, 0) 6≡ ⊥
and ∀m > 0. δ(s,m) ≡ ⊥, while for vertices x ∈ V the number of arguments
n ∈ N align with the arity of the assigned function or predicate `(x), i.e.,
∀m ∈ N. δ(x,m) ≡ ⊥ ↔ m > n. A CFM is valid if it does not contain cir-
cular dependencies, i.e., on every cycle induced by δ there must lie at least a
single cell. We only consider valid CFMs.

An example CFM for our music player of Sec. 2 is depicted in Fig. 6. Inputs I
come from the left and outputs O leave on the right. The example contains a
single cell c ∈ C, which holds the stateful memory Cell, introduced during
synthesis for the module. The green, arrow shaped boxes depict vertices V ,
which are labeled with functions and predicates names, according to `. For the
Boolean decisions that define δ, we use circuit symbols for conjunction, disjunc-
tion, and negation. Boolean decisions are piped to a multiplexer gate that selects
the respective update streams. This allows each update stream to be passed to
an output stream if and only if the respective Boolean trigger evaluates posi-
tively, while our construction ensures mutual exclusion on the Boolean triggers.
For code generation, the logic gates are implemented using the corresponding
dedicated Boolean functions. After building a control structure, we assign se-
mantics to functions and predicates by providing implementations. To this end,
we use Functional Reactive Programming (FRP). Prior work has established
Causal Commutative Arrows (CCA) as an FRP language pattern equivalent to
a CFM [45,46,69]. CCAs are an abstraction subsumed by other functional reac-
tive programming abstractions, such as Monads, Applicative and Arrows [45,44].
There are many FRP libraries using Monads [18,21,56], Applicative [4,6,31,63], or
Arrows [17,53,55,67], and since every Monad is also an Applicative and Applica-
tive/Arrows both are universal design patterns, we can give uniform translations
to all of these libraries using translations to just Applicative and Arrows. Both
translations are possible due to the flexible notion of a CFM.

In the last step, the synthesized FRP program is compiled into an executable,
using the provided function and predicate implementations. This step is not fixed
to a single compiler implementation, but in fact can use any FRP compiler (or
library) that supports a language abstraction at least as expressive as CCA. For
example, instead of creating an Android music player app, we could target an
FRP web interface [63] to create an online music player, or an embedded FRP
library [31] to instantiate the player on a computationally more restricted device.
By using the strong core of CCA, we even can directly implement the player in
hardware, which is for example possible with the CλaSH compiler [6]. Note that
we still need separate implementations for functions and predicates for each
target. However, the specification and synthesized CFM always stay the same.

7 Experimental Results

To evaluate our synthesis procedure we implemented a tool that follows the
structure of Fig. 1. It first encodes the given TSL specification in LTL and then
refines it until an LTL solver either produces a realizability result or returns a
non-spurious counter-strategy. For LTL synthesis we use the bounded synthesis
tool BoSy [22]. As soon as we get a realizing strategy it is translated to a cor-
responding CFM. Then, we generate the FRP program structure. Finally, after
providing function implementations the result is compiled into an executable.

To demonstrate the effectiveness of synthesizing TSL, we applied our tool to
a collection of benchmarks from different application domains, listed in Table 1.
Every benchmark class consists of multiple specifications, addressing different
features of TSL. We created all specifications from scratch, where we took care
that they either relate to existing textual specifications, or real world scenarios.
A short description of each benchmark class is given in [26].

For every benchmark, we report the synthesis time and the size of the syn-
thesized CFM, split into the number of cells (|CM|) and vertices (|VM|) used.
The synthesized CFM may use more cells than the original TSL specification
if synthesis requires more memory in order to realize a correct control flow.
The synthesis was executed on a quad-core Intel Xeon processor (E3-1271 v3,
3.6GHz, 32 GB RAM, PC1600, ECC), running Ubuntu 64bit LTS 16.04.

The experiments of Table 1 show that TSL successfully lifts the applicability
of synthesis from the Boolean domain to arbitrary data domains, allowing for new
applications that utilize every level of required abstraction. For all benchmarks
we always found a realizable system within a reasonable amount of time, where
the results often required synthesized cells to realize the control flow behavior.

We also considered a preliminary set of benchmarks that require multiple
refinement steps to be synthesizable. An overview of the results is given in
Table 2. The benchmarks are inspired by examples of the Reactive Banana FRP
library [4]. Here, purity of function and predicate applications must be utilized
by the system to ensure that the value of one or two counters never goes out of
range. Thereby, the system not only needs purity to verify this condition, but also
to take the correct decisions in the resulting implementation to be synthesized.

Table 1: Number of cells |CM| and vertices |VM| of the resulting CFMM and
synthesis times for a collection of TSL specifications ϕ. A * indicates that the
benchmark additionally has an initial condition as part of the specification.

Benchmark (ϕ) |ϕ| |I| |O| |P| |F| |CM| |VM| Synthesis
Time (s)

Button
default 7 1 2 1 3 3 8 0.364

Music App
simple 91 3 1 4 7 2 25 0.77
system feedback 103 3 1 5 8 2 31 0.572
motivating example 87 3 1 5 8 2 70 1.783

FRPZoo
scenario0 54 1 3 2 8 4 36 1.876
scenario5 50 1 3 2 7 4 32 1.196
scenario10 48 1 3 2 7 4 32 1.161

Escalator
non-reactive 8 0 1 0 1 2 4 0.370
non-counting 15 2 1 2 4 2 19 0.304
counting 34 2 2 3 7 3 23 0.527
counting* 43 2 2 3 8 4 43 0.621
bidirectional 111 2 2 5 10 3 214 4.555
bidirectional* 124 2 2 5 11 4 287 16.213
smart 45 2 1 2 4 4 159 24.016

Slider
default 50 1 1 2 4 2 15 0.664
scored 67 1 3 4 8 4 62 3.965
delayed 71 1 3 4 8 5 159 7.194

Haskell-TORCS
simple 40 5 3 2 16 4 37 0.680
advanced
gearing 23 4 1 1 3 2 7 0.403
accelerating 15 2 2 2 6 3 11 0.391
steering
simple 45 2 1 4 6 2 31 0.459
improved 100 2 2 4 10 3 26 1.347
smart 76 3 2 4 8 5 227 3.375

Table 2: Set of programs that use purity to keep one or two counters in range.
Synthesis needs multiple refinements of the specification to proof realizability.

Benchmark (ϕ) |ϕ| |I| |O| |P| |F| |CM| |VM| Refinements Synthesis
Time (s)

inrange-single 23 2 1 2 4 2 21 3 0.690
inrange-two 51 3 3 4 7 4 440 6 173.132
graphical-single 55 2 3 2 6 4 343 9 1767.948
graphical-two 113 3 5 4 9 - - - > 10000

8 Related Work

Our approach builds on the rich body of work on reactive synthesis, see [24] for a
survey. The classic reactive synthesis problem is the construction of a finite-state
machine that satisfies a specification in a temporal logic like LTL. Our approach
differs from the classic problem in its connection to an actual programming
paradigm, namely FRP, and its separation of control and data.

The synthesis of reactive programs, rather than finite-state machines, has
previously been studied for standard temporal logic [47,29]. Because there is no
separation of control and data, these approaches do not directly scale to realistic
applications. With regard to FRP, a Curry-Howard correspondence between LTL
and FRP in a dependently typed language was discovered [38,39] and used to
prove properties of FRP programs [13,42]. However, our paper is the first, to the
best of our knowledge, to study the synthesis of FRP programs from temporal
specifications.

The idea to separate control and data has appeared, on a smaller scale, in the
synthesis with identifiers, where identifiers, such as the number of a client in a
mutual exclusion protocol, are treated symbolically [20]. Uninterpreted functions
have been used to abstract data-related computational details in the synthesis
of synchronization primitives for complex programs [9]. Another connection to
other synthesis approaches is our CEGAR loop. Similar refinement loops also
appear in other synthesis appraches, however with a different purpose, such as
the refinement of environment assumptions [3].

So far, there is no immediate connection between our approach and the sub-
stantial work on deductive and inductive synthesis, which is specifically concerned
with the data-transformation aspects of programs [64,43,54,61,23,66]. Typically,
these approaches are focussed on non-reactive sequential programs. An inte-
gration of deductive and inductive techniques into our approach for reactive
systems is a very promising direction for future work. Abstraction-based synthe-
sis [7,19,32,50] may potentially provide a link between the approaches.

9 Conclusions

We have introduced Temporal Stream Logic, which allows the user to spec-
ify the control flow of a reactive program. The logic cleanly separates control
from complex data, forming the foundation for our procedure to synthesize FRP
programs. By utilizing the purity of function transformations our logic scales in-
dependently of the complexity of the data to be handled. While we have shown
that scalablility comes at the cost of undecidability, we addressed this issue by
using a CEGAR loop, which lazily refines the underapproximation until either
a realizing system implementation or an unrealizability proof is found.

Our experiments indicate that TSL synthesis works well in practice and on
a wide range of programming applications. TSL also provides the foundations
for further extensions. For example, a user may want to fix the semantics for a
subset of the functions and predicates. Such refinements can be implemented as
part of a much richer TSL Modulo Theory framework.

References

1. ACM: Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2003,
Uppsala, Sweden, August 28, 2003. ACM (2003)

2. ACM: Proceedings of the 1st International Workshop on Safe Control of Connected
and Autonomous Vehicles, SCAV@CPSWeek 2017, Pittsburgh, PA, USA, April 21,
2017. ACM (2017). https://doi.org/10.1145/3055378, http://doi.acm.org/10.1145/
3055378

3. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1)
temporal logic specifications. In: Formal Methods in Computer-Aided Design, FM-
CAD 2013, Portland, OR, USA, October 20-23, 2013. pp. 26–33. IEEE (2013),
http://ieeexplore.ieee.org/document/6679387/

4. Apfelmus, H.: Reactive-banana. Haskell library available at http://www.haskell.
org/haskellwiki/Reactive-banana (2012)

5. Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D. (eds.): Automata, Lan-
guages and Programming, 16th International Colloquium, ICALP89, Stresa, Italy,
July 11-15, 1989, Proceedings, Lecture Notes in Computer Science, vol. 372.
Springer (1989). https://doi.org/10.1007/BFb0035746, https://doi.org/10.1007/
BFb0035746

6. Baaij, C.: Digital circuit in CλaSH: functional specifications and
type-directed synthesis. Ph.D. thesis, University of Twente (1 2015).
https://doi.org/10.3990/1.9789036538039, https://doi.org/10.3990/1.
9789036538039, eemcs-eprint-23939

7. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based ap-
proach to solving games on infinite graphs. In: Jagannathan and Sewell [36], pp.
221–234. https://doi.org/10.1145/2535838.2535860, http://doi.acm.org/10.1145/
2535838.2535860

8. Bezem, M. (ed.): Computer Science Logic, 25th International Workshop / 20th An-
nual Conference of the EACSL, CSL 2011, September 12-15, 2011, Bergen, Norway,
Proceedings, LIPIcs, vol. 12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2011), http://drops.dagstuhl.de/opus/portals/extern/index.php?semnr=11007

9. Bloem, R., Hofferek, G., Könighofer, B., Könighofer, R., Ausserlechner, S., Spork,
R.: Synthesis of synchronization using uninterpreted functions. In: Formal Methods
in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21-
24, 2014 [34], pp. 35–42. https://doi.org/10.1109/FMCAD.2014.6987593, https:
//doi.org/10.1109/FMCAD.2014.6987593

10. Bloem, R., Jacobs, S., Khalimov, A.: Parameterized synthesis case study: AMBA
AHB. In: Chatterjee et al. [14], pp. 68–83. https://doi.org/10.4204/EPTCS.157.9,
https://doi.org/10.4204/EPTCS.157.9

11. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthe-
sis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012).
https://doi.org/10.1016/j.jcss.2011.08.007, https://doi.org/10.1016/j.jcss.2011.08.
007

12. Boehm, H., Flanagan, C. (eds.): ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013. ACM (2013), http://dl.acm.org/citation.cfm?id=2491956

13. Cave, A., Ferreira, F., Panangaden, P., Pientka, B.: Fair reac-
tive programming. In: Jagannathan and Sewell [36], pp. 361–372.
https://doi.org/10.1145/2535838.2535881, http://doi.acm.org/10.1145/2535838.
2535881

https://doi.org/10.1145/3055378
http://doi.acm.org/10.1145/3055378
http://doi.acm.org/10.1145/3055378
http://ieeexplore.ieee.org/document/6679387/
http://www.haskell.org/haskellwiki/Reactive-banana
http://www.haskell.org/haskellwiki/Reactive-banana
https://doi.org/10.1007/BFb0035746
https://doi.org/10.1007/BFb0035746
https://doi.org/10.1007/BFb0035746
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1145/2535838.2535860
http://doi.acm.org/10.1145/2535838.2535860
http://doi.acm.org/10.1145/2535838.2535860
http://drops.dagstuhl.de/opus/portals/extern/index.php?semnr=11007
https://doi.org/10.1109/FMCAD.2014.6987593
https://doi.org/10.1109/FMCAD.2014.6987593
https://doi.org/10.1109/FMCAD.2014.6987593
https://doi.org/10.4204/EPTCS.157.9
https://doi.org/10.4204/EPTCS.157.9
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
http://dl.acm.org/citation.cfm?id=2491956
https://doi.org/10.1145/2535838.2535881
http://doi.acm.org/10.1145/2535838.2535881
http://doi.acm.org/10.1145/2535838.2535881

14. Chatterjee, K., Ehlers, R., Jha, S. (eds.): Proceedings 3rd Workshop on Syn-
thesis, SYNT 2014, Vienna, Austria, July 23-24, 2014, EPTCS, vol. 157 (2014).
https://doi.org/10.4204/EPTCS.157, https://doi.org/10.4204/EPTCS.157

15. Claessen, K., Swamy, N. (eds.): Proceedings of the sixth workshop on Program-
ming Languages meets Program Verification, PLPV 2012, Philadelphia, PA, USA,
January 24, 2012. ACM (2012)

16. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643, https://doi.org/10.1145/876638.876643

17. Courtney, A., Nilsson, H., Peterson, J.: The yampa arcade. In: Proceedings of the
ACM SIGPLAN Workshop on Haskell, Haskell 2003, Uppsala, Sweden, August 28,
2003 [1], pp. 7–18. https://doi.org/10.1145/871895.871897, http://doi.acm.org/10.
1145/871895.871897

18. Czaplicki, E., Chong, S.: Asynchronous functional reactive pro-
gramming for guis. In: Boehm and Flanagan [12], pp. 411–422.
https://doi.org/10.1145/2462156.2462161, http://doi.acm.org/10.1145/2462156.
2462161

19. Dimitrova, R., Finkbeiner, B.: Counterexample-guided synthesis of ob-
servation predicates. In: Jurdzinski and Nickovic [41], pp. 107–122.
https://doi.org/10.1007/978-3-642-33365-1_9, https://doi.org/10.1007/
978-3-642-33365-1_9

20. Ehlers, R., Seshia, S.A., Kress-Gazit, H.: Synthesis with identifiers. In: McMillan,
K.L., Rival, X. (eds.) Verification, Model Checking, and Abstract Interpretation -
15th International Conference, VMCAI 2014, San Diego, CA, USA, January 19-
21, 2014, Proceedings. Lecture Notes in Computer Science, vol. 8318, pp. 415–433.
Springer (2014). https://doi.org/10.1007/978-3-642-54013-4_23, https://doi.org/
10.1007/978-3-642-54013-4_23

21. Elliott, C., Hudak, P.: Functional reactive animation. In: Jones et al. [40], pp. 263–
273. https://doi.org/10.1145/258948.258973, http://doi.acm.org/10.1145/258948.
258973

22. Faymonville, P., Finkbeiner, B., Tentrup, L.: Bosy: An experimenta-
tion framework for bounded synthesis. In: Majumdar and Kuncak [49],
pp. 325–332. https://doi.org/10.1007/978-3-319-63390-9_17, https://doi.org/10.
1007/978-3-319-63390-9_17

23. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transfor-
mations from input-output examples. In: Grove and Blackburn [30], pp.
229–239. https://doi.org/10.1145/2737924.2737977, http://doi.acm.org/10.1145/
2737924.2737977

24. Finkbeiner, B.: Synthesis of reactive systems. In: Esparza, J., Grumberg, O., Sick-
ert, S. (eds.) Dependable Software Systems Engineering. NATO Science for Peace
and Security Series, D: Information and Communication Security, vol. 45, pp. 72–
98. IOS Press (2016)

25. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Vehicle platooning sim-
ulations with functional reactive programming. In: Proceedings of the 1st In-
ternational Workshop on Safe Control of Connected and Autonomous Ve-
hicles, SCAV@CPSWeek 2017, Pittsburgh, PA, USA, April 21, 2017 [2],
pp. 43–47. https://doi.org/10.1145/3055378.3055385, http://doi.acm.org/10.1145/
3055378.3055385

26. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Temporal stream logic: Syn-
thesis beyond the bools. CoRR abs/1712.00246 (2019), http://arxiv.org/abs/
1712.00246

https://doi.org/10.4204/EPTCS.157
https://doi.org/10.4204/EPTCS.157
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/871895.871897
http://doi.acm.org/10.1145/871895.871897
http://doi.acm.org/10.1145/871895.871897
https://doi.org/10.1145/2462156.2462161
http://doi.acm.org/10.1145/2462156.2462161
http://doi.acm.org/10.1145/2462156.2462161
https://doi.org/10.1007/978-3-642-33365-1_9
https://doi.org/10.1007/978-3-642-33365-1_9
https://doi.org/10.1007/978-3-642-33365-1_9
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.1145/258948.258973
http://doi.acm.org/10.1145/258948.258973
http://doi.acm.org/10.1145/258948.258973
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1145/2737924.2737977
http://doi.acm.org/10.1145/2737924.2737977
http://doi.acm.org/10.1145/2737924.2737977
https://doi.org/10.1145/3055378.3055385
http://doi.acm.org/10.1145/3055378.3055385
http://doi.acm.org/10.1145/3055378.3055385
http://arxiv.org/abs/1712.00246
http://arxiv.org/abs/1712.00246

27. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5-6), 519–539
(2013). https://doi.org/10.1007/s10009-012-0228-z, https://doi.org/10.1007/
s10009-012-0228-z

28. Fisher, K., Reppy, J.H. (eds.): Proceedings of the 20th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015. ACM (2015), http://dl.acm.org/citation.cfm?id=
2784731

29. Gerstacker, C., Klein, F., Finkbeiner, B.: Bounded synthesis of reactive pro-
grams. In: Automated Technology for Verification and Analysis - 16th Inter-
national Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018,
Proceedings. pp. 441–457 (2018). https://doi.org/10.1007/978-3-030-01090-4_26,
https://doi.org/10.1007/978-3-030-01090-4_26

30. Grove, D., Blackburn, S. (eds.): Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015. ACM (2015), http://dl.acm.org/citation.cfm?id=2737924

31. Helbling, C., Guyer, S.Z.: Juniper: a functional reactive program-
ming language for the arduino. In: Janin and Sperber [37], pp. 8–16.
https://doi.org/10.1145/2975980.2975982, http://doi.acm.org/10.1145/2975980.
2975982

32. Hsu, K., Majumdar, R., Mallik, K., Schmuck, A.K.: Multi-layered abstraction-
based controller synthesis for continuous-time systems. In: Proceedings of the 21st
International Conference on Hybrid Systems: Computation and Control (part of
CPS Week). pp. 120–129. ACM (2018)

33. IEEE: 18th Annual Symposium on Foundations of Computer Science, Providence,
Rhode Island, USA, 31 October - 1 November 1977. IEEE Computer Society
(1977), http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4567914

34. IEEE: Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne,
Switzerland, October 21-24, 2014. IEEE (2014), http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=6975680

35. Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Faymonville, P.,
Finkbeiner, B., Khalimov, A., Klein, F., Michaud, T., Perez, G.A., Raskin, J.F.,
Sankur, O., Tentrup, L.: The 4th reactive synthesis competition (SYNTCOMP
2017): Benchmarks, participants and results. In: SYNT 2017. EPTCS, vol. 260,
pp. 116–143 (2017). https://doi.org/10.4204/EPTCS.260.10

36. Jagannathan, S., Sewell, P. (eds.): The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014. ACM (2014), http://dl.acm.org/citation.cfm?id=
2535838

37. Janin, D., Sperber, M. (eds.): Proceedings of the 4th International Workshop on
Functional Art, Music, Modelling, and Design, FARM@ICFP 2016, Nara, Japan,
September 24, 2016. ACM (2016). https://doi.org/10.1145/2975980, http://doi.
acm.org/10.1145/2975980

38. Jeffrey, A.: LTL types FRP: linear-time temporal logic propositions as
types, proofs as functional reactive programs. In: Claessen and Swamy [15],
pp. 49–60. https://doi.org/10.1145/2103776.2103783, http://doi.acm.org/10.1145/
2103776.2103783

39. Jeltsch, W.: Towards a common categorical semantics for linear-time temporal logic
and functional reactive programming. Electr. Notes Theor. Comput. Sci. 286, 229–
242 (2012). https://doi.org/10.1016/j.entcs.2012.08.015, https://doi.org/10.1016/
j.entcs.2012.08.015

https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/s10009-012-0228-z
http://dl.acm.org/citation.cfm?id=2784731
http://dl.acm.org/citation.cfm?id=2784731
https://doi.org/10.1007/978-3-030-01090-4_26
https://doi.org/10.1007/978-3-030-01090-4_26
http://dl.acm.org/citation.cfm?id=2737924
https://doi.org/10.1145/2975980.2975982
http://doi.acm.org/10.1145/2975980.2975982
http://doi.acm.org/10.1145/2975980.2975982
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4567914
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
https://doi.org/10.4204/EPTCS.260.10
http://dl.acm.org/citation.cfm?id=2535838
http://dl.acm.org/citation.cfm?id=2535838
https://doi.org/10.1145/2975980
http://doi.acm.org/10.1145/2975980
http://doi.acm.org/10.1145/2975980
https://doi.org/10.1145/2103776.2103783
http://doi.acm.org/10.1145/2103776.2103783
http://doi.acm.org/10.1145/2103776.2103783
https://doi.org/10.1016/j.entcs.2012.08.015
https://doi.org/10.1016/j.entcs.2012.08.015
https://doi.org/10.1016/j.entcs.2012.08.015

40. Jones, S.L.P., Tofte, M., Berman, A.M. (eds.): Proceedings of the 1997 ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’97), Amster-
dam, The Netherlands, June 9-11, 1997. ACM (1997)

41. Jurdzinski, M., Nickovic, D. (eds.): Formal Modeling and Analysis of Timed Sys-
tems - 10th International Conference, FORMATS 2012, London, UK, Septem-
ber 18-20, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7595.
Springer (2012). https://doi.org/10.1007/978-3-642-33365-1, https://doi.org/10.
1007/978-3-642-33365-1

42. Krishnaswami, N.R.: Higher-order functional reactive programming with-
out spacetime leaks. In: Morrisett and Uustalu [52], pp. 221–232.
https://doi.org/10.1145/2500365.2500588, http://doi.acm.org/10.1145/2500365.
2500588

43. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Comfusy: A tool for complete func-
tional synthesis. In: Touili et al. [62], pp. 430–433. https://doi.org/10.1007/978-3-
642-14295-6_38, https://doi.org/10.1007/978-3-642-14295-6_38

44. Lindley, S., Wadler, P., Yallop, J.: Idioms are oblivious, arrows are meticulous,
monads are promiscuous. Electr. Notes Theor. Comput. Sci. 229(5), 97–117 (2011).
https://doi.org/10.1016/j.entcs.2011.02.018, https://doi.org/10.1016/j.entcs.2011.
02.018

45. Liu, H., Cheng, E., Hudak, P.: Causal commutative arrows. J. Funct. Program.
21(4-5), 467–496 (2011). https://doi.org/10.1017/S0956796811000153, https://
doi.org/10.1017/S0956796811000153

46. Liu, H., Hudak, P.: Plugging a space leak with an arrow. Electr. Notes Theor. Com-
put. Sci. 193, 29–45 (2007). https://doi.org/10.1016/j.entcs.2007.10.006, https:
//doi.org/10.1016/j.entcs.2007.10.006

47. Madhusudan, P.: Synthesizing reactive programs. In: Bezem [8], pp. 428–442.
https://doi.org/10.4230/LIPIcs.CSL.2011.428, https://doi.org/10.4230/LIPIcs.
CSL.2011.428

48. Mainland, G. (ed.): Proceedings of the 9th International Symposium on
Haskell, Haskell 2016, Nara, Japan, September 22-23, 2016. ACM (2016).
https://doi.org/10.1145/2976002, http://doi.acm.org/10.1145/2976002

49. Majumdar, R., Kuncak, V. (eds.): Computer Aided Verification - 29th In-
ternational Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part II, Lecture Notes in Computer Science, vol. 10427.
Springer (2017). https://doi.org/10.1007/978-3-319-63390-9, https://doi.org/10.
1007/978-3-319-63390-9

50. Mallik, K., Schmuck, A.K., Soudjani, S., Majumdar, R.: Compositional
abstraction-based controller synthesis for continuous-time systems. arXiv preprint
arXiv:1612.08515 (2016)

51. Manna, Z., Waldinger, R.: A deductive approach to program syn-
thesis. ACM Trans. Program. Lang. Syst. 2(1), 90–121 (Jan 1980).
https://doi.org/10.1145/357084.357090, http://doi.acm.org/10.1145/357084.
357090

52. Morrisett, G., Uustalu, T. (eds.): ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013.
ACM (2013), http://dl.acm.org/citation.cfm?id=2500365

53. Murphy, T.E.: A livecoding semantics for functional reactive programming. In:
Janin and Sperber [37], pp. 48–53. https://doi.org/10.1145/2975980.2975986, http:
//doi.acm.org/10.1145/2975980.2975986

https://doi.org/10.1007/978-3-642-33365-1
https://doi.org/10.1007/978-3-642-33365-1
https://doi.org/10.1007/978-3-642-33365-1
https://doi.org/10.1145/2500365.2500588
http://doi.acm.org/10.1145/2500365.2500588
http://doi.acm.org/10.1145/2500365.2500588
https://doi.org/10.1007/978-3-642-14295-6_38
https://doi.org/10.1007/978-3-642-14295-6_38
https://doi.org/10.1007/978-3-642-14295-6_38
https://doi.org/10.1016/j.entcs.2011.02.018
https://doi.org/10.1016/j.entcs.2011.02.018
https://doi.org/10.1016/j.entcs.2011.02.018
https://doi.org/10.1017/S0956796811000153
https://doi.org/10.1017/S0956796811000153
https://doi.org/10.1017/S0956796811000153
https://doi.org/10.1016/j.entcs.2007.10.006
https://doi.org/10.1016/j.entcs.2007.10.006
https://doi.org/10.1016/j.entcs.2007.10.006
https://doi.org/10.4230/LIPIcs.CSL.2011.428
https://doi.org/10.4230/LIPIcs.CSL.2011.428
https://doi.org/10.4230/LIPIcs.CSL.2011.428
https://doi.org/10.1145/2976002
http://doi.acm.org/10.1145/2976002
https://doi.org/10.1007/978-3-319-63390-9
https://doi.org/10.1007/978-3-319-63390-9
https://doi.org/10.1007/978-3-319-63390-9
https://doi.org/10.1145/357084.357090
http://doi.acm.org/10.1145/357084.357090
http://doi.acm.org/10.1145/357084.357090
http://dl.acm.org/citation.cfm?id=2500365
https://doi.org/10.1145/2975980.2975986
http://doi.acm.org/10.1145/2975980.2975986
http://doi.acm.org/10.1145/2975980.2975986

54. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Grove
and Blackburn [30], pp. 619–630. https://doi.org/10.1145/2737924.2738007, http:
//doi.acm.org/10.1145/2737924.2738007

55. Perez, I., Bärenz, M., Nilsson, H.: Functional reactive programming, refactored.
In: Mainland [48], pp. 33–44. https://doi.org/10.1145/2976002.2976010, http://
doi.acm.org/10.1145/2976002.2976010

56. van der Ploeg, A., Claessen, K.: Practical principled FRP: forget the
past, change the future, frpnow! In: Fisher and Reppy [28], pp. 302–314.
https://doi.org/10.1145/2784731.2784752, http://doi.acm.org/10.1145/2784731.
2784752

57. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 Octo-
ber - 1 November 1977 [33], pp. 46–57. https://doi.org/10.1109/SFCS.1977.32,
https://doi.org/10.1109/SFCS.1977.32

58. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
Ausiello et al. [5], pp. 652–671. https://doi.org/10.1007/BFb0035790, https://doi.
org/10.1007/BFb0035790

59. Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society 52(4), 264–268 (04 1946), http://projecteuclid.org/euclid.
bams/1183507843

60. Shan, Z., Azim, T., Neamtiu, I.: Finding resume and restart errors
in android applications. In: Visser and Smaragdakis [65], pp. 864–880.
https://doi.org/10.1145/2983990.2984011, http://doi.acm.org/10.1145/2983990.
2984011

61. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013).
https://doi.org/10.1007/s10009-012-0249-7, https://doi.org/10.1007/
s10009-012-0249-7

62. Touili, T., Cook, B., Jackson, P.B. (eds.): Computer Aided Verifica-
tion, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-
19, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6174.
Springer (2010). https://doi.org/10.1007/978-3-642-14295-6, https://doi.org/10.
1007/978-3-642-14295-6

63. Trinkle, R.: Reflex-frp. https://github.com/reflex-frp/reflex (2017)
64. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchroniza-

tion. STTT 15(5-6), 413–431 (2013). https://doi.org/10.1007/s10009-012-0232-3,
https://doi.org/10.1007/s10009-012-0232-3

65. Visser, E., Smaragdakis, Y. (eds.): Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,
October 30 - November 4, 2016. ACM (2016). https://doi.org/10.1145/2983990,
http://doi.acm.org/10.1145/2983990

66. Wang, X., Dillig, I., Singh, R.: Synthesis of data completion scripts
using finite tree automata. PACMPL 1(OOPSLA), 62:1–62:26 (2017).
https://doi.org/10.1145/3133886, http://doi.acm.org/10.1145/3133886

67. Winograd-Cort, D.: Effects, Asynchrony, and Choice in Arrowized Functional
Reactive Programming. Ph.D. thesis, Yale University (December 2015), http:
//www.danwc.com/s/dwc-yale-formatted-dissertation.pdf

68. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Synthesis of control protocols for
autonomous systems. Unmanned Systems 1(01), 21–39 (2013)

https://doi.org/10.1145/2737924.2738007
http://doi.acm.org/10.1145/2737924.2738007
http://doi.acm.org/10.1145/2737924.2738007
https://doi.org/10.1145/2976002.2976010
http://doi.acm.org/10.1145/2976002.2976010
http://doi.acm.org/10.1145/2976002.2976010
https://doi.org/10.1145/2784731.2784752
http://doi.acm.org/10.1145/2784731.2784752
http://doi.acm.org/10.1145/2784731.2784752
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
http://projecteuclid.org/euclid.bams/1183507843
http://projecteuclid.org/euclid.bams/1183507843
https://doi.org/10.1145/2983990.2984011
http://doi.acm.org/10.1145/2983990.2984011
http://doi.acm.org/10.1145/2983990.2984011
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/978-3-642-14295-6
https://doi.org/10.1007/978-3-642-14295-6
https://doi.org/10.1007/978-3-642-14295-6
https://github.com/reflex-frp/reflex
https://doi.org/10.1007/s10009-012-0232-3
https://doi.org/10.1007/s10009-012-0232-3
https://doi.org/10.1145/2983990
http://doi.acm.org/10.1145/2983990
https://doi.org/10.1145/3133886
http://doi.acm.org/10.1145/3133886
http://www.danwc.com/s/dwc-yale-formatted-dissertation.pdf
http://www.danwc.com/s/dwc-yale-formatted-dissertation.pdf

69. Yallop, J., Liu, H.: Causal commutative arrows revisited. In: Mainland [48],
pp. 21–32. https://doi.org/10.1145/2976002.2976019, http://doi.acm.org/10.1145/
2976002.2976019

https://doi.org/10.1145/2976002.2976019
http://doi.acm.org/10.1145/2976002.2976019
http://doi.acm.org/10.1145/2976002.2976019

	Temporal Stream Logic: [0.2em] Synthesis beyond the Bools

