COMS 1002
Computing in the Arts

Track overview - 3 modules

1) Visuals

Generative art and algorithmic creativity

2) Audio

“Performing your code” - making music with live coding
3) Physical Computing

Connecting our code to the physical world

Module 1: Visuals

processing.py

Can computers be creative?

How do we use computation to ‘
guide/augment/inform our
creative impulses?

http://www.youtube.com/watch?v=MHFuSQK6GL8&t=76

Module 2: Audio

SonicPi

Live Coding: Play your
laptop like an instrument

How can code be used
beyond creating products?

How do we write code that
controls data over time?

iy

{ Bil

=) (S e

Oromy BIP. Siem MR, Twam Uen, Love s tom

I LI P

(wns I, Nimer 18NN
e ™)

e T T

Irwns Z36, Shmei wvEIn, K
S - (-

(s T30, Rhdmy 13,0400, Whemati "Lide_lasg seler)
o B30, Shamy M0N0, Swem AW R
- lien o 19

frwes 537, Shems THANTE o bl -

f Spremml boratprell), loos
i spresdd !, Ch.lock

(e E36, Simer 1830, R e
Crwms 238, ot 0B AN e L
o Lt
v 1 *Live Loow sete*y

“Rhen bnow et e

et L AT Rl Rt A R BT R A

Low Fras Fifter
- EEED e EEEEEED

L
"y

T o awte of e pgne Fun ww Mnper P SN e Pl s rrrm gy €any e ey ret e @ W e e e s Py ey Ve e vt ol .
v o & e 080 K b reews of S G Pemmm e of e WoW 0 § e AR 0 e S s T el e ey e e tees

http://www.youtube.com/watch?v=cydH_JAgSfg&t=40

Module 3: Physical Computing

required purchase: BBC micro:bit (~$20 USD)

How are physical, digital devices created?

What are the challenges in connecting code to s
the physical world? TR)"

micro:bit-. ee

Track overview - 3 modules

1) Visuals

Generative art and algorithmic creativity

2) Audio

“Performing your code” - making music with live coding

3) Physical Computing (Purchase a microbit now! Either version is fine)

Connecting our code to the physical world

Track overview - lectures

Each module has two lectures.

Lecture 1 will be implementation focused and give you the tools you need to
complete the associated project.

Lecture 2 will be theory focused and give us a chance to discuss issues in
computing in the arts and computational creativity.

Quick breakout rooms of ~4

Introduce yourselves:

1) Which module are you most excited for and why?
2) Why did you choose this track?

Module 1: Visuals with Processing

- programming environment

- visually oriented applications Execution Starts Here...
_ i I I ” Processing
for artists, by artists ot 5 Progam
@\ U
Own its origins to “Turtle Graphics” draw) €
ocoo O n 30
imes/
Applet / / (t:\rgl?:laslff)

history of turtle graphics

Turtle graphics was part of the
original Logo programming
language developed by Wally
Feurzeig, Seymour Papert and
Cynthia Solomon in 1967.

?REPEAT 2@ [REPEAT 18@ [FD 1 RT 21 RT 13
T

http://www.youtube.com/watch?v=mttyoaspa7U

44 VV/

\

/

\

' Python Turtle Graphics

Turtle Graphics vs Processing

Turtle Graphics:
Low-level commands, drawing lines, simple commands (left, forward, etc)
Used to teach basics of programming/computational processes
Processing:
High-level language, lines/shapes/images/etc, large set of API commands,

Used to teach basics of programming and to create art

Processing in practice

https://vimeo.com/320513063 (play from 0:53 to 1:58)

https://vimeo.com/320513063

Processing example code

1) Setting up canvas
2) Drawing shapes

G;) Ir]F)lJt Mouse 2D.

Moving the mouse changes the position of the box.
nmn

def setup():
size(640, 360)
noStroke()
rectMode (CENTER)

Demo time... (Mouse2D) def draw()

background(51)
fill1(255, 204)
rect(mouseX, height / 2, mouseY / 2 + 10, mouseY / 2 + 10)

Basic flow of a Processing program

Setup your “canvas” with the setup() function

Animate the “canvas” with draw()

Execution Starts Here...

setup()

Processing
_— Program
’ o

=1

[ele Ne}

draw()

O
Applet /

v

60
times/sec
(normally)

setup()

This allows you to set global properties
for your canvas.

Execution Starts Here...

Only runs once at the beginning of Processing
. setup() / Program
execution. B
. . mouse H
Variable declared in the scope of setup <}
do not exist outside that scope! — m | o
/ times/sec
Appit / (normally)

S etu p () Execution Starts Here...

Examples a =20 Processing
-~ Program

def setup(): sehel)

size(200, 200)
background(0) ﬂ

noStroke() feLse

fill(1e2) <}

draw()

def draw(): coo O
background(@)
global a Applet
a = (a+ 1) % width P /
rect(a, 10, 2, 80)

> 60
/ times/sec

(normally)

Description The setup() function is called once when the program starts. It's used to
define initial enviroment properties such as screen size and background
color and to load media such as images and fonts as the program starts.
There can only be one setup() function for each program and it shouldn't
be called again after its initial execution. Note: Variables declared within
setup() are not accessible within other functions, including draw().

a few key functions

size() - set the size of the display window

background() - set the background color of the window. Can also be
set to an image.

fill()/noFill() - the default color to use when filling shapes (like rect)

stroke/noStroke() - the default color to use for the outline of shapes
(like rect)

colorMode() - the color mode to use. Defaults to RGB

colors on the computer

values 0-255 (278, 8-bit color)

0 50 87 162 209 255

colorMode()

RGB - Red, Green, Blue
24-bit color, 8-bits for R, G, and B

RGBA - Red, Green, Blue, Alpha
HSB - Hue, Saturation, Brightness

RGB and HSB express the same set of
colors

On the computer screen,
we are mixing light, not paint.

Demo (LinearGradient)

draw()

Setup your “canvas” with the setup() function

Animate the “canvas” with draw() o
Processing
setup() .~ Program
Ese)\ U
draw() c
— > |~ 2 i 60/
Imes/sec
Applet / & (normally)

drawing shapes

drawing in processing users a grid system, much like Turtle Graphics

point (x, V)

X ——>

0123456789

point(x,y);

® A(4,5) -
A(4,5);

O 0N OOV & W N =» O

drawing shapes

drawing in processing users a grid system, much like Turtle Graphics

line(x1, v1, x2, v2):

X —

0223 4567389

A(1,2) B(5,2)
[L J
line(x1,y1,x2,y2);

line(1,2,5,2);

O 0N OOV & W N B O

drawing shapes

drawing in processing users a grid system, much like Turtle Graphics

rect (x, y, width, height);

X —

012 34567859

(2,2)
L

f

height
l

«——width —

rect(x,y,width,height);

rect(2,2,7,5);

O 0NN OV & W N » O

drawing shapes

drawing in processing users a grid system, much like Turtle Graphics

ellipseMode (CENTER) ;
ellipse(x, y, width, height);

X —

2.2 34567189

ellipseMode(CENTER);
ellipse(x,y,width,height);
® (4,4)

ellipseMode(CENTER);
ellipse(4,4,5,7);

O 0N OOV & W N =+ O

drawing shapes

drawing in processing users a grid system, much like Turtle Graphics

ellipseMode (CENTER) ;
ellipse(x, y, width, height);

X —

2.2 34567189

ellipseMode(CENTER);
ellipse(x,y,width,height);
® (4,4)

ellipseMode(CENTER);
ellipse(4,4,5,7);

O 0N OOV & W N =+ O

drawing shapes

Usually, we draw much larger shapes, so
we cannot see the pixels

Note: shapes are rendered one at a time,
and will be layered based on code order

|
|

rect(30, 20, 55, 55)

rect(30, 20, 55, 55, 7)

rect(30, 20, 55, 55, 3, 6, 12, 18)

manipulating shapes

translate()
rotate()

scale()

Demo time (myRotate)

user input/interactivity

Allows your animations to be interactive

mouse input

Allows your animations
to be interactive

Demo:
Mouse2D,
MousePress

vold
vV UL

if (mouseButton == LEFT)
£411:(0) ;
else if (mouseButton ==

el

mouseClicked () {

i 13 (259

se
Fill (126) ;

RIGHT)

d mousePressed ()

(@)
=t
(

Q.

mouseReleased ()

O
I

mouseClicked ()

O
I
Q.

Q.

mouseDragged ()

O
I

0,

mouseMoved ()

<
@)
k

id mouseWheel ()

O
I

3

3
O O

11ea¥Y

¢
u.

W n O @

D
=<

)]

=
D t
< P8

6 O &
(

e B
c o

=
=

keyboard input

Allows your animations
to be interactive

Demo:
Keyboard

void keyTyped () {

1E ke == "B")
£i11(0);

else if (key == 'w')
Fi1l (255) ;

else
il (1.26). ;

void keyPressed()

void keyReleased ()

Understanding Frame Rate

mnn

Performance demo using quad rendering

mmn

How does the xrange value
def setup():

change the framerate? size(800, 600, P2D)
noStroke()
fill(e, 1)

. . def draw():

Demo time (quadRendering) background (255)

for i in xrange(500):
x = random(width)
y = random(height)
rect(x, y, 30, 30)

if frameCount % 10 == 0:
print frameRate

Learning Processing

@ FiveWaysOfWritingText | Processing 3.5.4 — O X
File Edit Sketch Tools Help

Read the reference docs! .

FiveWaysOfWritingText

Demonstration of the 5 ways of calling text() in Python mode.

https://py.processing.org/reference/

def setup():
size (500, 500, P3D)

aobh wWwN e

>t draw() :
background(255)
fill(e)
#noStroke()

6
7

text(string, x, y)
tep= =t B
Cut
1 Copy
tey Copy as HTML
Paste

Select All

Comment/Uncomment

— — Increase Indent

Decrease mae
£ Find in Reference
Lale, v

https://py.processing.org/reference/

Processing in Python

Q Mouse2D | Processing 3.5.4 — O X
File Edit Sketch Tools Help

Processing was originally written in Java.

Mouse2D

Mouse 2D.

Moving the mouse changes the position of t

Lucky for us, there is also a Python mode

Y def setup():
size(640, 360)
noStroke()
rectMode (CENTER)

M def draw():
background(51)

EM Cconsole

Processing in Python

Q Mouse2D | Processing 3.5.4
File Edit Sketch Tools Help

Processing was originally written in Java.

Lucky for us, there is also a Python mode

Y def setup():
size(640, 360)
noStroke()
rectMode (CENTER)

Note: there are some limitations draw():

background(51)

EM Cconsole

More resources

A tutorial from a really energetic instructor https://hello.processing.org/

https://py.processing.orqg/tutorials/

endless code examples: File > Examples (Ctrl+Shift+o)

https://hello.processing.org/
https://py.processing.org/tutorials/

Project 1

Making Art with Processing

This is an open-ended project. You are required to be creative.

More details in lab.

Next week lecture

Generative processes to “automatically” create “art”

