
COMS 1002
Computing in the Arts

Track overview - 3 modules
1) Visuals

Generative art and algorithmic creativity

2) Audio

“Performing your code” - making music with live coding

3) Physical Computing

Connecting our code to the physical world

Module 1: Visuals
processing.py

Can computers be creative?

How do we use computation to
guide/augment/inform our
creative impulses?

http://www.youtube.com/watch?v=MHFuSQK6GL8&t=76

Module 2: Audio
SonicPi

Live Coding: Play your
laptop like an instrument

How can code be used
beyond creating products?

How do we write code that
controls data over time?

http://www.youtube.com/watch?v=cydH_JAgSfg&t=40

Module 3: Physical Computing
required purchase: BBC micro:bit (~$20 USD)

How are physical, digital devices created?

What are the challenges in connecting code to
the physical world?

Track overview - 3 modules
1) Visuals

Generative art and algorithmic creativity

2) Audio

“Performing your code” - making music with live coding

3) Physical Computing (Purchase a microbit now! Either version is fine)

Connecting our code to the physical world

Track overview - lectures
Each module has two lectures.

Lecture 1 will be implementation focused and give you the tools you need to
complete the associated project.

Lecture 2 will be theory focused and give us a chance to discuss issues in
computing in the arts and computational creativity.

Quick breakout rooms of ~4
Introduce yourselves:

1) Which module are you most excited for and why?
2) Why did you choose this track?

Module 1: Visuals with Processing
- programming environment
- visually oriented applications
- “for artists, by artists”

Own its origins to “Turtle Graphics”

history of turtle graphics
Turtle graphics was part of the
original Logo programming
language developed by Wally
Feurzeig, Seymour Papert and
Cynthia Solomon in 1967.

http://www.youtube.com/watch?v=mttyoaspa7U

Turtle Graphics vs Processing
Turtle Graphics:

Low-level commands, drawing lines, simple commands (left, forward, etc)

Used to teach basics of programming/computational processes

Processing:

High-level language, lines/shapes/images/etc, large set of API commands,

Used to teach basics of programming and to create art

Processing in practice
https://vimeo.com/320513063 (play from 0:53 to 1:58)

https://vimeo.com/320513063

Processing example code
1) Setting up canvas
2) Drawing shapes
3) Input

Demo time... (Mouse2D)

Basic flow of a Processing program
Setup your “canvas” with the setup() function

Animate the “canvas” with draw()

60

setup()
This allows you to set global properties
for your canvas.

Only runs once at the beginning of
execution.

Variable declared in the scope of setup
do not exist outside that scope! 60

setup()

60

a few key functions
size() - set the size of the display window

background() - set the background color of the window. Can also be
set to an image.

fill()/noFill() - the default color to use when filling shapes (like rect)

stroke/noStroke() - the default color to use for the outline of shapes
(like rect)

colorMode() - the color mode to use. Defaults to RGB

colors on the computer
values 0-255 (2^8, 8-bit color)

colorMode()
RGB - Red, Green, Blue

24-bit color, 8-bits for R, G, and B

RGBA - Red, Green, Blue, Alpha

HSB - Hue, Saturation, Brightness

RGB and HSB express the same set of
colors

On the computer screen,
we are mixing light, not paint.

Demo (LinearGradient)

draw()
Setup your “canvas” with the setup() function

Animate the “canvas” with draw()

60

drawing shapes
drawing in processing users a grid system, much like Turtle Graphics

drawing shapes
drawing in processing users a grid system, much like Turtle Graphics

drawing shapes
drawing in processing users a grid system, much like Turtle Graphics

drawing shapes
drawing in processing users a grid system, much like Turtle Graphics

drawing shapes
drawing in processing users a grid system, much like Turtle Graphics

drawing shapes
Usually, we draw much larger shapes, so
we cannot see the pixels

Note: shapes are rendered one at a time,
and will be layered based on code order

manipulating shapes
translate()

rotate()

scale()

Demo time (myRotate)

user input/interactivity
Allows your animations to be interactive

mouse input
Allows your animations
to be interactive

Demo:
Mouse2D,
MousePress

keyboard input
Allows your animations
to be interactive

Demo:
Keyboard

Understanding Frame Rate

How does the xrange value
change the framerate?

Demo time (quadRendering)

Learning Processing
Read the reference docs!

https://py.processing.org/reference/

https://py.processing.org/reference/

Processing in Python
Processing was originally written in Java.

Lucky for us, there is also a Python mode

Processing in Python
Processing was originally written in Java.

Lucky for us, there is also a Python mode

Note: there are some limitations

More resources
A tutorial from a really energetic instructor https://hello.processing.org/

https://py.processing.org/tutorials/

endless code examples: File > Examples (Ctrl+Shift+o)

https://hello.processing.org/
https://py.processing.org/tutorials/

Project 1
Making Art with Processing

This is an open-ended project. You are required to be creative.

More details in lab.

Next week lecture
Generative processes to “automatically” create “art”

